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Two approaches for modeling of parameter dependence of dynamical systems from time series are investi-
gated and applied to different examples. For both methods it is assumed that a few time series are available that
have been measured for different(known) parameter values of the underlying(experimental) dynamical sys-
tem. The objective is to model the changing dynamics of the system as a function of its parameters and to use
this for experimental bifurcation analysis. Usingparametrized familiesthe tasks of modeling the dynamics and
of modeling its parameter dependence are separated. Technical difficulties that may occur with this approach
are discussed and illustrated. An alternative areextended state space modelswhere both modeling tasks are
treated simultaneously. To obtain reliable models from a few time series only, ensembles of models are
employed that show very good extrapolation and generalization properties.
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I. INTRODUCTION

During the past two decades considerable progress has
been achieved in modeling and predicting time series from
complex systems. The machine learning community has de-
veloped general frameworks such as statistical learning
theory [1] and sophisticated modeling and evaluation tech-
niques[2] that are applicable to the special task of time se-
ries prediction. Particular interest is paid to the generaliza-
tion features of models, i.e., their ability to correctly describe
data (far) away from the training set used to generate the
model. A promising approach for deriving robust and general
methods areensemble methods, where a superposition of
many different models provides the desired description of the
given data set[3–10]. Such ensemble methods are very use-
ful if only a few (training) data are available and will be
employed in the following.

In nonlinear dynamics, research on data analysis was ini-
tiated by the seminal work of Packardet al. [11] and Takens
[12] who introduced the concept of state space reconstruc-
tion based on(scalar) time series[13]. To model the flow in
reconstructed state space almost any method for function ap-
proximation(on scattered data) can and has been used[2]. In
this way the temporal evolution of a deterministic(chaotic)
system can be modeled and predicted. However, the dynam-
ics of a nonlinear system depends not only on initial condi-
tions and corresponding attractors but also on the current
values of relevant parameters. Varying system parameters
may result in bifurcations and transitions to coexisting attrac-
tors. Except for very few cases[14–21] such a parameter
dependence has not been taken into account yet when deriv-
ing black-box models from measured data.

Given a physical system or process that depends on some
system parameters that can be varied by an experimentalist,
the task is to generate a time series based model of this

system that describes not only the temporal dynamics but
also the parameter dependence. To do this we assume that for
(a few) different parameter values time series of the system
are available and that these parameter values are known.

To motivate and illustrate the task of modeling parameter
dependence and to present different approaches for solving it
we shall consider now a simple example given by a one-
dimensional iterated map(1) that depends on a singlesystem
parameter p,

xt+1 = fsxt,pd = p expf− sxt − 1d2g. s1d

Figure 1(a) shows a bifurcation diagram of this discrete dy-
namical system vs system parameterp. To model the(cha-
otic) dynamics and the dependence on the parameterp sev-
eral time series are “measured” at some fixed parameter
valuespi. Each of these time series consists ofN=10 000
samples where transients have been discarded. Then a poly-
nomial model of sixth order,

yt+1 = o
m=0

6

qmyt
m, s2d

is fitted to each data set individually. Due to the varying
system parameterp the model parameters qm also change.
Figure 1(b) shows model parameterq0 vs system parameter
p. The dashed line indicates the theoretical resultq0=p/e
(e=2.7182̄ Euler’s number) that is valid for a complete
power series expansion of the functionf in Eq. (1). In those
parameter regions where periodic orbits occur not enough
differentdata points exist and the least squares problem for
estimating the polynomial coefficients is ill posed. As a re-
sult the estimates forq0 fluctuate strongly and deviate from
the true values. This problem may be overcome if transients
are available, in particular for(low) periodic attractors. Fig-
ure 1(c) shows the estimated model parameterq0 based on
approximations including transient data. The dependence of
the other parametersq1−q6 on p is very similar. The reason
why transient data stabilize the model is illustrated in Fig. 2.
On the left hand side a model(solid curve) based on a
period-4 orbit(symbols) is shown that deviates significantly
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from the graph of the true function(dashed curve). With a
few transient data points the model agrees much better with
the true function as shown in the right diagram of Fig. 2.
This ansatz for modeling parameter dependence usingpa-
rametrized familieswill be discussed in more detail in Sec.
III A. If no transient data are available one may prefer an-
other approach for modeling the parameter dependence and
include the varying parameter(s) in the input vector of the
dynamical model. For the one-dimensional map the function
to be learned or approximated thus reads

sxt,pd ° xt+1. s3d

In general, the input vector consists of a delay vector aug-
mented by the value(s) of the system parameter(s) p1,p2, . . .
for which the corresponding time serieshxtj have been
measured,

sxt,xt−1,xt−2, . . . ,p1,p2, . . . d ° xt+1. s4d

Figure 3 shows such a representation of both the dynamics
and its parameter dependence for the iterated map(1). The
symbols denote the location of the pointssxt+1,xt ,pd that are
given by the samples from the time series. The grid indicates
the graph of the underlying function(1) that has to be ap-
proximated in order to model both the dynamics and its pa-
rameter dependence. Using all time series(with different val-
ues of the system parameterp) simultaneously stabilizes and
improves the resulting regression function in particular in
those regions of input space where only few data points
(fixed points and periodic orbits of the map) are available.
Suchextended state space modelswill be discussed in more
detail in Sec. III B. In the following Sec. II we shall briefly
summarize fundamentals of nonlinear regression and en-
semble modeling. Section III contains the main results for
modeling parameter dependences using parametrized fami-
lies and extended state space models.

II. MODELING

A. Nonlinear regression

To model the dynamics underlying some given scalar
time serieshstj (with discrete timet) we first reconstruct
state vectors xt using time delay embeddingxt
=sst ,st−t , . . . ,st−sD−1dtd wheret denotes the delay(or lag) and
D is the reconstruction dimension[12,13]. Regression mod-
eling aims to predict future values of the time series from
past samples. Therefore we introduce a second variableyt
=st+T which is to be predicted withT being the length of the
prediction step. The task of regression modeling is to give
the most probable representation of the underlying determin-
istic rule of the time series. Here we assume that additive
Gaussian noiseet with zero mean perturbs the observed out-
put valuesyt= fsxtd+et [22]. The model representation off
can be accomplished for example by neural networks trained
on the time series or a series expansion(also calledpseudo-
linear models) with an appropriately chosen set of basis
functions, which can be polynomials, splines, radial func-
tions, etc. In the latter case the modelg:RD→R is a linear

FIG. 1. (a) Bifurcation diagram of the iterated map(1). (b)
Model parameterq0 vs system parameterp. The dashed lineq0

=p/e indicates the theoretical relation.(c) Same as(b) but for a data
set including transients.

FIG. 2. Fit of the underlying function(1) without (left) and with
(right) transient data. Dashed line: true graph of the function under-
lying the data; symbols: time series values; solid curve: model.

FIG. 3. Modeling parameter dependence in extended state
space. Time series generated by the iterated map(1) for different
values of the system parameterp constitute the data base for ap-
proximating the underlying functional relationxt+1 vs sxt ,pd. The
grid indicates the graph of Eq.(1).
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superposition of nonlinear basis functionsfm,

gsxd = o
m=1

M

qmfmsxd. s5d

The coefficientsqm are calculated for a fixed set of basis
functions by minimization of the mean square error(MSE)

EMSE = ksyt − gsxtdd2lt

computed for a subset of the available data calledtraining
set. The minimization can be done by solving the normal
equations

GTGq̂ = GTy, s6d

whereG is a matrix withGtm=fmsxtd and q̂ is the vector of
estimated model parameters. These equations can be solved
by singular value decomposition or other linear methods
[23]. Furthermore, it is desired that the final model contains
only the most significant basis functions in terms of their
individually achieved error reduction on the training data.
Techniques for term selection have been developed to either
start with a full set of functions and to remove them from the
model one by one—the most redundant in each step—or—
computationally less costly—to start with the function that
describes the data best, i.e., achieves lowest error as a single
term model, and build in more functions, which in each step
maximize error reduction. An efficient method for the second
approach isforward orthogonal regressionintroduced by
Korenberg[24], which we use here in a slightly modified
version.

Another important feature of models is theirgeneraliza-
tion capability, i.e., a measure of prediction accuracy ontest
data that originate from the same source under the same
conditions but that were not used for training the model. The
generalization performance of a model can be assessed by
evaluating training error and test error(generalization error)
on independent splits of the data by means of cross-
validation methods[2]. Since the model complexity in-
creases when adding basis functions it can be observed that
the training error decreases monotonously when increasing
the numberM of basis functionsfm in Eq. (5). The test error
first follows this tendency but it increases again from some
point onwards. The reason for this is calledoverfittingand it
has a simple explanation: Any finite data set is a random
realization of the underlying process(because the time of
measurement and/or initial values are chosen randomly).
Furthermore, data are usually contaminated with noise. As
the model complexity increases, the model does not only
describe the underlying deterministic structure but also these
random features of the available data. Since only the deter-
ministic content of the training data is reproduced in the test
data, a too complex model has a lower predictive power
there. Besides that a training error below the noise variance
se

2=ke2lt does not make sense. These insights can be ex-
pressed in terms ofbias andvarianceaccording to the error
decomposition introduced by Gemanet al. [25]. The bias
accounts for the deviation of the expected regression from
the true regression and thevariancecaptures the scattering of
individual models around their expectation. Too simple mod-

els have a high bias(because of the lack of approximative
power) and low variance. On the other hand, very(too) com-
plex models possess a small bias but high variance. These
statements on model behavior cannot be assigned to indi-
vidual models. Therefore it is still possible that by chance a
(too) complex model has good generalization properties(al-
though in principle it should suffer from overfitting) while a
model with same complexity, that has been trained on a dif-
ferent fraction of the data, generalizes badly.

Different methods have been devised to cope with over-
fitting. An important technique isregularization [2] where
penalty terms are added to the MSE that depend upon the
model complexity and/or the size of the coefficientsqm. Con-
sequently, a slightly different optimization problem occurs
that can again be solved with linear methods(see, for ex-
ample, Ref.[26] on the application of theTikhonov-Phillips
regularization method). It achieves variance reduction
through a smoothing effect on the model functiong. Regu-
larization of the model can also be achieved by using a mul-
tistep mean square error(MMSE) as cost function. In this
case for each initial condition a numberU of free iterations
of the model are computed and compared with the observed
time series

EMMSE = U−1Ko
u=1

U

syt+u−1 − gsudsxtdd2L
t

, s7d

where gsud denotes theuth iterate of the model functiong
[27]. The coefficientsqm of the model are adjusted iteratively
by minimising the multistep mean square error(7) using any
appropriate nonlinear optimization method. This guarantees
that the resulting free run trajectory segments stay closer to
the orbits reconstructed from the data. A similar method was
proposed in Ref.[28] for the construction of noise-free tra-
jectories. Minimizing the MMSE(7) results in a further de-
crease of bias and variance compared to the single step MSE.

As model terms we employ in the following Gaussian
radial basis functions of widthdm:

fmsxd = fsx,cm,dmd = expf− sx − cmd2/dm
2 g s8d

centered atcm in the input(state) space plus a constant term
and linear functions of the components ofx.

B. Ensemble models

One of the major issues of this paper are the generaliza-
tion capabilities of models used for modeling parameter de-
pendencies. As it is standard procedure to apply the learning
scheme multiple times to diverse initial conditions including
different fractions of the data, ensembling the resulting mod-
els relief the difficulty of selecting the single best model
from that population and rather effectively combine some of
them without spending too much effort on coping with fea-
tures of randomness of the individual models. Ensemble
methods make no assumptions on the best model structure to
use especially when mixtures of different model topologies
are concerned. When using cross validation for assessing the
generalization capabilities of our single models we always
have to have a test data set that is not directly used for
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generating the model. In contrast to that an ensemble as a
whole may have seen during training of the participating
models all of the data covered by the individual training sets.
So, all data can enter the final(ensemble) model and no data
are “wasted” for testing, only. It has been shown that en-
sembles consisting of different models yield better descrip-
tions of the underlying deterministic structure of the data
than single models do. In this way ensembles generalize bet-
ter and give better predictions even far away from the train-
ing data.

At the beginning of the 1990s Hansen and Salamon[3]
showed that this works for an ensemble of diverse neural
networks. Research activities on ensemble methods have
mainly focused on the use of neural networks and decision
trees applied to classification tasks(e.g., Dietterich[6]), but
ensemble methods are applicable to regression problems as
well (e.g., Perroneet al. [4]). Whereas in classification a
majority vote of single hypotheses/models is used, regression
ensembles come along with weighted averages of their
model outputs. For the choice of the participating models it
is crucial that they are diverse to the extent that the errors
they make are uncorrelated.

For generating ensembles we have to introduce variance
in the models involved.Computational varianceis achieved
by randomizing the models. Prior to the creation of each
single model participating in the ensemble a basis function
pool is made up from a number of randomly drawn recon-
structed state space vectors defining the centerscm of the
radial basis functions(8). Additionally the selected centers
may be shifted by random variates[15] to increase compu-
tational variance of the resulting models. The widthsdm of
the Gaussian functions are chosen to be at maximum of the
order of the time series’ variance. From this pool the most
significant functions are chosen by the forward orthogonal
regression algorithm[24], which establishes the model in its
first form. To improve it we apply a local search scheme
(Levenberg-Marquardt method, for a description see Ref.
[23]) to iteratively optimize those parameters(centers and
widths) on which the model output of the series expansion
(5) depends nonlinearly. The model coefficientsqm are up-
dated simultaneously in that process by linear methods. A
third learning step may consist of a multistep error reduction
and adjustments to the coefficients. Since in the multistep
case the output depends nonlinearly on the coefficientsqm
the Levenberg-Marquardt method is used again to solve the
minimization problem. The data presented to this learning
scheme for each model are randomly drawn from the original
data without checking for multiple occurrences. If the train-
ing data sets so generated had the same length as the origi-
nal, this would resemble the bootstrap method from statistics
(for a thorough discussion see Ref.[29]). Compared to a split
of the data leading to training and test data in the classical
fashion, the data used in each modeling run have a random
distribution which enables the(unstable) learning algorithm
to reach diverse solutions. In this way we introducerealiza-
tional varianceinto our models. In such a way an ensemble
represents an effective way of dealing with small amounts of
data.

A reasonable number of models to be combined ranges
from 3 to about 20. Investigations of the role of the ensemble

size can be found in Krogh and Sollich[9]. In the following
we shall use uniform ensemble weightswk=K−1 whereK is
the ensemble size. Methods for improving the performance
of the ensemble model using nonuniform weights have been
proposed, for example, by Merz and Pazzani[30], Perrone
and Cooper[4], and Zhouet al. [7]. For further discussion
and reference on the ensemble effect, see Appendix A.

III. PARAMETER DEPENDENCES

In this section both approaches for modeling parameter
dependencies,parametrized familiesand extended state
space models, are discussed in detail and illustrated with
examples.

A. Parametrized families

The crucial first step is a proper choice of the param-
etrized family on the basis of the given time series. The basis
functions fmsxd=fsx ,cm,dmd have to be the same for all
(different) time series. Only the coefficientsqm are assumed
to depend on the system parameters and a different set of
them corresponds to each of thel =1, . . . ,L parameter set-
tings pl,

g„xuqspld… = o
m=1

M

qmspldfmsxd. s9d

In this way all dynamics are described in the same func-
tion basis. The difficulty lies in the choice of a useful set
of basis functions that allows capturing different dynamics
associated with different time series. Here the construction
of a model family from Gaussian radial basis functions is
done in the following steps. First a pool of centerscm is
generated that are selected randomly from amongstall re-
constructed state space vectors and therefore follow their em-
pirical distribution (see also Ref.[15]). The widthsdm are
chosen to be at maximum of the order of magnitude of the
averagetime series variance. In accordance with the chosen
procedure terms are selected from the pool one after the
other. Further details and considerations on this are given in
Appendix B.

It is still possible then that not all modelsgls·d=gs·uqld
achieve equally low error rates on their respective time series
or do not reproduce the original dynamics with the same
accuracy when run freely. This to a large extent depends on
the spatial distribution of training examples given by the
different time series. If the reconstructed attractors differ
largely in shape, size, and position they fill different parts of
state space. This may lead to the occurrence of basis func-
tions f j in the parametrized family that are not equally im-
portant for the modeling of all of the participating time se-
ries. Like with the problem of a lack of transients, for some
time series the corresponding coefficients may be difficult to
estimate reliably. Generally, this method works well if tran-
sients are included or if the attractors underlying the different
time series are(geometrically) similar to some degree.

Once the selection of basis functions is finished and the
relevant model parameters are computed for the given time

G. LANGER AND U. PARLITZ PHYSICAL REVIEW E70, 056217(2004)

056217-4



series, the relation between(physical) system parametersp
and model parametersq has to be modeled. In general, letB
system parameters be mapped toM model parameters

q:RB → RM, p ° qmspd,m= 1¯ M . s10d

Describing this relation is again a matter of interpolation
or extrapolation. For example, a polynomial model(ordern)
could be fitted to the samplessqml,pld, whose sn
+Bd ! / n! B! coefficients are solution to a set of linear equa-
tions ( L rows). For given B the polynomial ordern and
numberL of models should be put into sensible proportions
to avoid overfitting.

Figure 4 shows bifurcation diagrams of the Rössler oscil-
lator,

ẋ1 = − x2 − x3,

ẋ2 = x1 + px2,

ẋ3 = 2 +x3sx1 − 4d, s11d

for p1=0.3¯0.45. Figure 4(a) shows a bifurcation diagram
computed with original model equations(11). The vertical
dashed lines are plotted at those five parameter values
pP h0.31,0.34,0.37,0.4,0.43j for which times series have
been taken to construct a parametrized family of Gaussian
radial basis function networks with 15 terms. To obtain a
continuous parameter dependence of the coefficients a third
order polynomial was fitted to the set of model parameters
sqjl ,pld , j =1¯15,l =1¯5. Afterwards the model can be
tuned to any value of the parameterp within a sensible range
to query the dynamics. This approach was used to compute
the reconstructed bifurcation diagram shown in Fig. 4(b),
where the model is used to generate time series in depen-
dence of the control parameterp. As can be seen by compar-
ing the results with Fig. 4(a) many details of the bifurcation
structure are reproduced correctly.

B. Extended state space models

One major shortcoming of the modeling ansatz discussed
above is the need of transients or chaotic data to obtain good
estimations of the model parameters. However, measured
data often lack transient information and therefore are not
well suited for that method. Another strategy of modeling the
dynamics and the parameter dependence from time series
goes back to Casdagli[14] in the late 1980s and was later
used by Judd and Mees[15]. The novelty of this ansatz was
the extension of the reconstructed state space to include all
changing system parameters

x̃t = sxt,pd = sst,st−t , . . . ,st−sD−1dt ,p1, . . . ,pBd. s12d

The input space of the model now has dimensionD+B and
the model approximates a functionRD3RB→R. The recon-
structed time series along with their individual parameter
extensions(parameters are constant for a given time series)
are merged together and form a single data set. This data set
is used to train the model as if it was one time series only.
This approach is illustrated in Fig. 3. Therext+1 is plotted vs

the extended state vectorsxt ,pd. By modeling we now seek
the hypersurface containing the array of curvesxt+1
= fsxt ,pd, instead of a model family based on single curves.
The model comprises both dynamics and parameter depen-
dence. As the parameter components are different from the
other elements of the input vectors, dynamics takes place
only in x-component slicess;RDd of the extended state
space. This has to be taken into account, when the model is
used for the simulation of time series. For example, when
computing bifurcation diagrams those components of the in-
put vector that correspond to parameters are kept fixed dur-
ing the free run of the model.

One major advantage of this method is, that the demands
on the distribution of training examples in reconstructed state
space are reduced compared to training on a single time se-
ries. The reason for that is, that by aggregating the training
examples of many time series there is more information for
the modeling process, especially when time series are treated
that contain no transient information. Consider again Fig. 3
as an example: In the region of low periodic orbitsspl ,2d
there is not enough information to even fit a second order

FIG. 4. Bifurcation diagrams of the Rössler oscillator.(a) Origi-
nal using Eq.(11), (b) reconstructed with parametrized family of
models(see Sec. III A), and (c) reconstructed with extended state
space model(see Sec. III B).
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polynomial. However, through the inclusion of data in a
neighborhood(with respect to the parameter) the amount of
training data now suffices for that purpose. This insight can
be applied to the modeling of data of higher dimensional
(and continuous) systems as well. The generalization capa-
bilities of the model at a particular parameter value profit
from additional information contained in time series nearby.

The training procedure here is simpler than that of a pa-
rametrized family because all time series are treated as a
single data set. Centers for radial basis functions are again
chosen randomly from all reconstructed state vectors in the
extended state space. Term selection is performed as de-
scribed before including nonlinear optimization of center po-
sitions and widths. The influence of the terms on error reduc-
tion is shared among the individual time series segments of
the data set. If one time series requiresM terms to yield a
good model, thenL time series modelled this way require
significantly less thanL3M terms.

When using radial basis functions the range of all ele-
ments of the input vectorsxt ,xt−1,xt−2, . . . ,p1,p2, . . .d should
be similar. This is guaranteed for the time series components
xt ,xt−1,xt−2, . . . , but theparameter componentsp1,p2, . . . may
lie in a completely different range. In such cases the(gener-
alization) performance of the model may be improved by
introducing additional scaling factors for the parameters.
With polynomial basis functions no such scaling factors are
required.

The above described modeling approach has been used to
obtain the result shown in Fig. 4(c). There we used the same
time series as in Fig. 4(b) (see Sec. III A), but with no tran-
sients included. The model consisted of 55 Gaussian radial
basis functions and the parameterp was scaled upwards by a
factor of 20.8. Note that the bifurcation diagram generated
with the extended state space method[Fig. 4(c)] matches
even better the original diagram[Fig. 4(a)] than the diagram
computed with the parametrized families approach[Fig.
4(b)]. Our experience with examples indicate that in general
the extended state space method is superior to parametrized
families.

Furthermore, the method is well suited for the application
of an ensemble strategy especially to improve the generali-
zation capabilities of models based on noisy real world time
series. To demonstrate this we measured time series from an
electronic Colpitts oscillator(see circuit diagram in Fig. 5).
The measured signalst is the voltage over the capacitorC2
and as the variable system parameter we chose the positive
supply voltageVC. Figure 6(a) shows an experimental bifur-
cation diagram that has been recorded for reference using a

small step size in the parameter dimension. There one coor-
dinate of a Poincaré section is plotted vs the voltageVC. For
modeling the dynamics and parameter dependence only ten
time series are used whose parameter values are given by the
vertical dashed lines.

All models to participate in an ensemble were trained in-
dividually on randomized subsets of the original data. A typi-
cal single model result is shown in Fig. 6(b) and it should be
compared to the reference diagram[Fig. 6(a)]. Here 160
Gaussian radial basis functions were used and a parameter
scale factor of 2. As mentioned above(see Sec. II B) the
single best model is hard to find and randomness in the
whole modeling procedure leads to a distribution of models,
which becomes obvious if one compares results from differ-

FIG. 5. Circuit diagram of the Colpitts oscillator.

FIG. 6. Bifurcation diagrams of the Colpitts oscillator.(a) Ex-
perimental result,(b) single model, and(c) ensemble consisting of
three models(see text).
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ent modeling attempts that fail to reproduce each other.
So we applied the ensemble strategy[see Fig. 6(c)] and
combined three models of comparable quality with equal
weights. The individual models contained 155–160 terms
and the same scale factor was used. The ensemble in
this case outperforms any single model. As the diagram
shows, many detailed features of the original[Fig. 6(a)] are
recovered.

IV. CONCLUSION

Two approaches for modeling parameter dependence of
the dynamics of a given(experimental) system have been
presented. Both methods require as input a few time series
measured for different values of the physical control param-
eters. Usingparametrized familiesthe problem of modeling
parameter dependence is separated from modeling the dy-
namics. This approach yields satisfying results but problems
may occur with simple attractors such as fixed points or pe-
riodic orbits filling a very small fraction of the input space,
only. These difficulties can be avoided by including tran-
sients or using theextended state spaceapproach where
modeling dynamics and its parameter dependence are treated
as a single task. In this framework fixed point solutions or
periodic data are only a part of the whole modeling problem
and thus no ill-posed approximation tasks occur. The given
examples and experience with other data show that theex-
tended state spacemethod is in general superior to models
based on parametrized families.

In this paper we have assumed that the variable physical
parameters are known and that their values can be directly
incorporated in the modeling ansatz. If(some of) the chang-
ing physical parameters are not known(or cannot be mea-
sured) information about the parameter dependence is only
implicitly given in terms of the time series reflecting differ-
ent dynamics. This case has been investigated by Tokunaga
et al. [16], Tokudaet al. [17], and Bagarinaoet al. [18–20]
using(different types of) parametrized families. When fitting
the parametrized familiy each time series provides a vector
of model parameters defining a point in the coresponding
model parameter space. Then linear(principle component
analysis) [16,17,20,21] or nonlinear(principal curves) [18]
approximation methods are used to extract a compact repre-
sentation of the distribution of model parameters. Bifurcation
sets computed with the resulting models were compared with
those obtained with the original model that was used to gen-
erate the time series. Another approach for treating the case
of unknown parameters[19] is based on a superposition of
the different models where the weights are used as bifurca-
tion control parameters.

If only a few time series for different parameter values are
available modeling methods are needed that are robust and
possess very good generalization abilities. The generated
models have to be able to describe correctly also the dynam-
ics and possible bifurcations(far) away from the parameter
values where time series have been measured. To achieve
this goal we useensemble methodswhere a superposition of
the output of different individually trained models is consid-
ered as result of the(ensemble) model. Ensembles perform

better than their members if the errors of the individual mod-
els are small and not, or weakly, correlated. The key to en-
semble learning methods are techniques to effectively pro-
duce diverse model populations. Such methods include the
use of variable model topologies and types as well as ran-
domizing initial parameters of training algorithms(computa-
tional variance) or some sort of manipulations of the data
presented to these algorithms(realizational variance). The
(dis-)agreement of the different models constituting the en-
semble can be used to determine locations in(model) param-
eter space where the desired description of the parameter
dependence is not yet reliable. In this way error bounds for
predicted bifurcations can be estimated. Furthermore, param-
eter values can be identified for which additional measure-
ments would be desirable resulting in anactive learning
scheme for improving the model.
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APPENDIX A: ENSEMBLE METHODS

For regression problems the ensemble method may be de-
fined and described as follows. Letf :RD→R be the true
regression to be modeled. Assume we have trainedK predic-
tor modelsfk to be combined in an ensemble. The ensemble
output is the convex sum

f̄sxd = o
k=1

K

wkfksxd, sA1d

where the ensemble weightswk have to obeyok=1
K wk=1 and

0øwkø1∀k. The assessment of the generalization capa-
bilities of the ensemble, i.e., the quadratic error of the en-

semble esxd=fysxd− f̄sxdg2, involves the quadratic error
eksxd=fysxd− fksxdg2 of model fk, the average quadratic error
ēsxd=ok=1

K wkeksxd of the participating modelsfk and their

scattering around the ensemble meanf̄ given by the so-called
ensemble ambiguity[8,9],

āsxd = o
k=1

K

wkfs f̄sxd − fksxdg2. sA2d

From these definitions the relation

esxd = ēsxd − āsxd sA3d

can be derived[9].
Under the assumption that the inputsx have been chosen

randomly according to a probability distributionPsxd we can
average(A3) over Psxd [i.e., e=eesxdPsxddx, etc.] which
yields themean ensemble generalization error,
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e= ē− ā. sA4d

The message of Eq.(A4) is the following: Make the indi-
vidual modelsfk good(low ē) and make them differ in their
estimates(large ā). These partly contradictory demands also
can be expressed in terms of the error correlation(see Zhou
et al. [7]) of the individual models,

cij =E fysxd − f isxdgfysxd − f jsxdgPsxddx, sA5d

because

e= o
i=1

K

o
j=1

K

wiwjcij . sA6d

Therefore the ensemble generalization error is small when
individual errorsek=ckk are small and the errors of the par-
ticipating models are uncorrelated(smallcij =cji). This shows
immediately that nothing can be gained from totally corre-
lated models wherecij =ei, because the ensemble generaliza-
tion error in this case is given by the average quadratic error
of the individual models,e=oi=1

K wiei = ē. On the other hand,
for vanishing correlations(i.e., cij =0 for i Þ j) we have a
theoretically minimal error of

e= o
k=1

K

wk
2ckk. sA7d

For realistic scenarios the ensemble generalization error
settles somewhere in between these limiting cases.

In recent years many explanations have been given why
ensembles work and why they are often superior to single
models(see, e.g., Refs.[5,8]). If, for instance, in classifica-
tion the error rate of a single classifier is lower than 0.5, then,
if a majority rule is applied, the ensemble classifier has an
even lower error rate[5]. In both cases, classification and
regression, we encounter variances of different origin in
populations of single models. There is a so calledcomputa-
tional variancewhich has its origin in unstable optimization
algorithms like most neural network training algorithms or
splitting rules of decision trees. These algorithms respond
sensitively to different initial conditions for the model pa-
rameters such as random initial weights of a neural network.
They never produce the same model in different runs with
different initializations, because they converge to different
local minima of some complex error landscape. Another type
of variance is introduced by the data sample itself, its limited
size and its noise content. This so-calledrealizational vari-
ance is closely related to overfitting, but in contrast to a
single model an ensemble of overfitted models(with its re-
sulting variety) may provide a robust description of the data
with good generalization features. Realizational variance
may be generated or enhanced by various data manipulation
and resampling techniques such asbagging(bootstrap aggre-
gating, see Breiman[31] and Efron[29]) andboosting(see
Freund and Shapire[32] or Avnimelech and Intrator[33]).
Whereas in bagging the bootstrap replicates of the data set
are independent in different runs, the data presented to the
learning algorithm in a boosting scheme depend on prior

runs. A bootstrap replicate is obtained by random sampling
from the empirical distribution of the data(i.e., for a data set
of lengthN each sample is drawn with probabilityN−1). The
N drawings can result in multiple appearance of some and
absence of other examples in the training data set. Diversity
is therefore provoked via randomizing the distribution of the
data without any feedback. The latter, on the other hand,
comes into place in a boosting scheme, where examples that
turned out to be difficult to predict(or classify) by a prior
model receive a higher probability to be drawn as training
examples for the next model.

APPENDIX B: GENERATING PARAMETRIZED FAMILIES

Here we discuss in short what is necessary to consider,
when selecting terms for a parametrized family. We consider
here a general situation in the middle of the process. LetIsid

be the set of indices corresponding to the pool of basis func-
tions available in theith step. Furthermore, byyl we denote
the vector of valuesyt

l of time seriesl that its reconstructed
state vectorsxt

l are supposed to be mapped to by the model,
xt

l °yt
l. Let gml =(gmsx1

l d . . . ,gmsxt
ld , . . . ,gmsx1

Nd) be a vector
containing these mappings of state vectors of time seriesl by
basis functiongms·d and letg̃ml

sid being its orthogonalized ver-
sion with respect to all corresponding vectors based on basis
functions that have been chosen during previous steps 1¯ i
−1. Then in stepi the basis functiongmi

s·d is inserted into the
model architecture which provides the largest total error re-
duction on allL time series, i.e., explains more of them than
any other term,

mi = argmaxmPIsido
l=1

L

kylug̃ml
sidl2/ig̃ml

sidi2, sB1d

and theith coefficient of the model of thelth time series is

q̃il = kylug̃mi l
sid l/ig̃mi l

sid i. sB2d

The q̃il have to be transformed to be coefficients of the non-
orthogonal basis functionsgmi l

s·d. For simplicity the basis
functions belonging to the model are now relabeled bym
=1, . . . ,M (instead ofm1, . . . ,mM). This choice of a subset
of terms constitutes the initial condition for a nonlinear op-
timization of the model. The optimization aims at improving
the Gaussian basis functionsfms·d by moving their centers
cm and changing their widthsdm to more favorable values.
This is done iteratively, where in between consecutive itera-
tions theqml are updated via the orthogonal method of least
squares. For the ease of notation the parameterscm and
dm are summarized in a vectoru and by agls·d we now
denote the model with coefficientsqml fitted to thelth time
series. SoL of them additively contribute to the total mean
square error and to its derivatives with respect tou that are
necessary to define the gradient and the pseudo-HessianD
(needed for the Levenberg-Marquardt method). A general it-
eration stepr of the minimization algorithm requires the fol-
lowing calculations:

EMSEsusrdd =
1

LN
o
l=1

L

o
t=1

N

fylt − glsxltuusrddg2, sB3d
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]

] ui
EMSE =

1

LN
o
l=1

L

o
t=1

N
]

] ui
fylt − glsxltuusrddg2, sB4d

Dij =
1

LN
o
l=1

L

o
t=1

N
] glsxltuusrdd

] ui

] glsxltuusrdd
] u j

. sB5d

Here we assume that all time series are of equal lengthN
as the length ratio now acts like a weight when computing
each newDusrd (resulting in a tradeoff among all participat-
ing time series).

Afterwards the coefficientsqml can be “polished” indi-
vidually for all time series according to multistep error re-
duction, as was explained above Eq.(7).
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