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Modeling parameter dependence from time series
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Two approaches for modeling of parameter dependence of dynamical systems from time series are investi-
gated and applied to different examples. For both methods it is assumed that a few time series are available that
have been measured for differglithown) parameter values of the underlyifgxperimentgl dynamical sys-
tem. The objective is to model the changing dynamics of the system as a function of its parameters and to use
this for experimental bifurcation analysis. Usipgrametrized familiethe tasks of modeling the dynamics and
of modeling its parameter dependence are separated. Technical difficulties that may occur with this approach
are discussed and illustrated. An alternative extended state space modeleere both modeling tasks are
treated simultaneously. To obtain reliable models from a few time series only, ensembles of models are
employed that show very good extrapolation and generalization properties.

DOI: 10.1103/PhysReVvE.70.056217 PACS nun$)er05.45.Tp, 82.40.Bj, 82.20.Wt

I. INTRODUCTION system that describes not only the temporal dynamics but
) . also the parameter dependence. To do this we assume that for
During the past two decades considerable progress hag few) different parameter values time series of the system
been achieved in modeling and predicting time series fronye gyailable and that these parameter values are known.
complex systems. The machine learning community has de- 14 motivate and illustrate the task of modeling parameter
veloped general frameworks such as statistical leamingiependence and to present different approaches for solving it
theory [1] and sophisticated modeling and evaluation techyye shall consider now a simple example given by a one-

niques(2] that are applicable to the special task of time sejimensional iterated magl) that depends on a singégstem
ries prediction. Particular interest is paid to the ge”eral'zaparameter P
tion features of models, i.e., their ability to correctly describe

data (far) away from the training set _used to generate the X1 = F(XuP) = p exf— (%, — 1)?]. (1)
model. A promising approach for deriving robust and generaI:igure Xa) shows a bifurcation diagram of this discrete dy-

methods areensemble methodsvhere a superposition of namical system vs system paramepeiTo model the(cha-
many different models provides the desired description of th%tic) d na?/nics and tﬁle de gndence on the baranmetay-
given data sef3-10. Such ensemble methods are very use- y P harange

; = . . eral time series are “measured” at some fixed parameter
ful if only a few (training data are available and will be ; . )
. . valuesp;. Each of these time series consistsNof 10 000
employed in the following.

. . . ._samples where transients have been discarded. Then a poly-
In nonlinear dynamics, research on data analysis was ini-

tiated by the seminal work of Packaed al. [11] and Takens homial model of sixth order,

[12] who introduced the concept of state space reconstruc- 6
tion based or{scalaj time serieg13]. To model the flow in Vis1 = > VMV (2
reconstructed state space almost any method for function ap- m=0

proximation(on scattered dajzan and has been usg]. In is fitted to each data set individually. Due to the varying

this way the temporal evolution of a deterministe@haotio system parametep the model parameters galso change.

system can be modeled and predicted. However, the dynarﬁgure 1b) shows model paramete, vs system parameter
ics of a nonlinear system depends not only on initial condi-, The dashed line indicates the theoretical resyitp/e

tions and corresponding attractors but also on the curre t=2.7182-- Euler's number that is valid for a complete

values of Fe'eYa”t parameters. Vz_ir_ying system parametetb%wer series expansion of the functibin Eqg. (1). In those
may result in bifurcations and transitions to coexisting attrac'parameter regions where periodic orbits occur not enough

tors. Except for very few casgd4-21 such a parameter o rentdata points exist and the least squares problem for
dependence has not been taken into account yet when deriygtimating the polynomial coefficients is ill posed. As a re-
ing black-box models from measured data. sult the estimates faq, fluctuate strongly and deviate from
Given a physical system or process that depends on SOMgg e values. This problem may be overcome if transients
system parameters that can be varied by an experimentalist g 5\ 4ijable, in particular fatow) periodic attractors. Fig-
the task is to generate a time series based model of thl&re 1c) shows the estimated model parametgibased on

approximations including transient data. The dependence of
the other parameterg —qg on p is very similar. The reason

*Electronic address: gerrit@dpi.physik.uni-goettingen.de why transient data stabilize the model is illustrated in Fig. 2.
"Electronic address: parlitz@dpi.physik.uni-goettingen.de On the left hand side a modésolid curve based on a
FURL:http://www. physik3.gwdg.defulli period-4 orbit(symbolg is shown that deviates significantly
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4r(a)

FIG. 3. Modeling parameter dependence in extended state
space. Time series generated by the iterated (hgpor different
values of the system parameterconstitute the data base for ap-
proximating the underlying functional relatiog., vs (x;,p). The
grid indicates the graph of Eql).

(Xtvxt—lixt—Zi P P2, - ) = Xi1- (4)

Figure 3 shows such a representation of both the dynamics
and its parameter dependence for the iterated (apThe
symbols denote the location of the poilits, 1, %, p) that are
given by the samples from the time series. The grid indicates
the graph of the underlying functiofil) that has to be ap-
proximated in order to model both the dynamics and its pa-
rameter dependence. Using all time se(iegh different val-

ues of the system paramef@rsimultaneously stabilizes and
improves the resulting regression function in particular in

, , those regions of input space where only few data points
from the graph of the true functiodashed curve With & (fiyed noints and periodic orbits of the magre available.
few transient data points the model agrees much better witg ,-hextended state space modeldl be discussed in more
the true function as shown in the right diagram of Fig. 2.4e4j| in Sec. 11l B. In the following Sec. Il we shall briefly
This ansatz for modeling parameter dependence Us®g g mmarize fundamentals of nonlinear regression and en-
rametrized familieswill be discussed in more detail in Sec. gample modeling. Section Il contains the main results for
[l A. If no transient data are available one may prefer aN-modeling parameter dependences using parametrized fami-
other approach for modeling the parameter dependence afds and extended state space models.
include the varying parametsy in the input vector of the
dynamical model. For the one-dimensional map the function
to be learned or approximated thus reads

FIG. 1. (@ Bifurcation diagram of the iterated mag). (b)
Model parameteigy vs system parametgr. The dashed lingy,
=p/eindicates the theoretical relatioft) Same agb) but for a data
set including transients.

II. MODELING

A. Nonlinear regression

Xe, P) > Xep1- 3
0P =Xy ® To model the dynamics underlying some given scalar

In general, the input vector consists of a delay vector augtime series{s;} (with discrete timet) we first reconstruct

mented by the valus) of the system parametsy p;,p,,...  State vectors x; using time delay embeddingx;
for which the corresponding time serids;} have been =(s;,s-,,....S-(p-1),) Whererdenotes the delagor lag) and
measured, D is the reconstruction dimensidgi2,13. Regression mod-

eling aims to predict future values of the time series from
past samples. Therefore we introduce a second varigble
=s,,7 Which is to be predicted witf being the length of the
prediction step. The task of regression modeling is to give
the most probable representation of the underlying determin-
1 istic rule of the time series. Here we assume that additive
Gaussian noise; with zero mean perturbs the observed out-
. put valuesy,=f(x;) + ¢ [22]. The model representation &f
0—35 T2 = 03 T 2 e can be accomplished for example by neural networks trained
on the time series or a series expangjalso calledpseudo-
FIG. 2. Fit of the underlying functionl) without (left) and with ~ linear model$ with an appropriately chosen set of basis
(right) transient data. Dashed line: true graph of the function underfunctions, which can be polynomials, splines, radial func-
lying the data; symbols: time series values; solid curve: model. tions, etc. In the latter case the modelR® — R is a linear

Xia1

—_
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superposition of nonlinear basis functioss, els have a high biathecause of the lack of approximative
powen and low variance. On the other hand, véigo) com-

(5) plex models possess a small bias but high variance. These
statements on model behavior cannot be assigned to indi-
vidual models. Therefore it is still possible that by chance a

The coefficientsq,, are calculated for a fixed set of basis (too) complex model has good generalization propertigs

functions by minimization of the mean square ef®#SE)  though in principle it should suffer from overfittingvhile a

M
9(X) = 2 Qmbm(X).
m=1

— iy — 2 model with same complexity, that has been trained on a dif-
Buse = ((y: = 90))%) ferent fraction of the data, generalizes badly.
computed for a subset of the available data cattaéhing Different methods have been devised to cope with over-
set The minimization can be done by solving the normalfitting. An important technique isegularization [2] where
equations penalty terms are added to the MSE that depend upon the
GG4=GT ©) model complexity and/or the size of the coefficiegts Con-

sequently, a slightly different optimization problem occurs
whereG is a matrix withG,,= ¢(x,) andq is the vector of that can again be solved with linear methadse, for ex-
estimated model parameters. These equations can be solvaanple, Ref[26] on the application of th&@ikhonov-Phillips
by singular value decomposition or other linear methoddegularization method It achieves variance reduction
[23]. Furthermore, it is desired that the final model containghrough a smoothing effect on the model functgnRegu-
only the most significant basis functions in terms of theirlarization of the model can also be achieved by using a mul-
individually achieved error reduction on the training data.tistep mean square err¢MMSE) as cost function. In this
Techniques for term selection have been developed to eith&ase for each initial condition a numberof free iterations
start with a full set of functions and to remove them from theof the model are computed and compared with the observed
model one by one—the most redundant in each step—or-iime series
computationally less costly—to start with the function that U
describes the data best, i.e., achieves lowest error as a single —1)-1 — qU(y.))2
term model, and build in more functions, which in each step Eumse = U uzl(y”“_l gre0" / 0
maximize error reduction. An efficient method for the second ] )
approach isforward orthogonal regressionntroduced by where g denotes thauth iterate of the model functiog
Korenberg[24], which we use here in a slightly modified [27]. _'I'he_C(_)eff|C|ent$1|m_of the model are adjusted |_terat|vely
version. by minimising the multistep mean square erfoy using any
Another important feature of models is thejeneraliza- appropriate nc_)nlinear optimi;ation method. This guarantees
tion capability, i.e., a measure of prediction accuracytest ~ that the resulting free run trajectory segments stay closer to
data that originate from the same source under the saméEhe orbits reconstructed from the data_. AS|m|Ia_r method was
conditions but that were not used for training the model. TheProposed in Ref[28] for the construction of noise-free tra-
generalization performance of a model can be assessed IfFtories. Minimizing the MMSK?7) results in a further de-
evaluating training error and test err@eneralization errgr ~ cteéase of bias and variance compared to the single step MSE.
on independent splits of the data by means of cross- AS model terms we employ in the following Gaussian
validation methods[2]. Since the model complexity in- radial basis functions of widthy,
creases when adding basis functions it can be observed that _ _ v — ~ V22
the training error decreases monotonously when increasing Pm(X) = PX, C i) = EXHL= (X = )/l ®
the numbeM of basis functionsp,, in Eq.(5). The test error centered at,, in the input(statg space plus a constant term
first follows this tendency but it increases again from someand linear functions of the componentsyof
point onwards. The reason for this is calleerfittingand it
has a simple explanation: Any finite data set is a random
realization of the underlying procegbecause the time of
measurement and/or initial values are chosen randomly One of the major issues of this paper are the generaliza-
Furthermore, data are usually contaminated with noise. Afion capabilities of models used for modeling parameter de-
the model complexity increases, the model does not onlpendencies. As it is standard procedure to apply the learning
describe the underlying deterministic structure but also thesscheme multiple times to diverse initial conditions including
random features of the available data. Since only the detedifferent fractions of the data, ensembling the resulting mod-
ministic content of the training data is reproduced in the testls relief the difficulty of selecting the single best model
data, a too complex model has a lower predictive powefrom that population and rather effectively combine some of
there. Besides that a training error below the noise variancghem without spending too much effort on coping with fea-
0‘§:<62>t does not make sense. These insights can be exures of randomness of the individual models. Ensemble
pressed in terms dfias andvarianceaccording to the error methods make no assumptions on the best model structure to
decomposition introduced by Gema al. [25]. The bias  use especially when mixtures of different model topologies
accounts for the deviation of the expected regression fronare concerned. When using cross validation for assessing the
the true regression and thiariancecaptures the scattering of generalization capabilities of our single models we always
individual models around their expectation. Too simple mod-have to have a test data set that is not directly used for

t

B. Ensemble models
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generating the model. In contrast to that an ensemble as size can be found in Krogh and Solli¢8]. In the following
whole may have seen during training of the participatingwe shall use uniform ensemble weighig=K™! whereK is
models all of the data covered by the individual training setsthe ensemble size. Methods for improving the performance
So, all data can enter the fin@nsemblgmodel and no data of the ensemble model using nonuniform weights have been
are “wasted” for testing, only. It has been shown that enproposed, for example, by Merz and Pazzg81)], Perrone
sembles consisting of different models yield better descripand Coopef4], and Zhouet al. [7]. For further discussion

than single models do. In this way ensembles generalize bet-

ter and give better predictions even far away from the train-
ing data. IIl. PARAMETER DEPENDENCES

At the beginning of the 1990s Hansen and Salarfjn , . )
showed that this works for an ensemble of diverse neural [N this section both approaches for modeling parameter
networks. Research activities on ensemble methods hawependenciesparametrized familiesand extended state
mainly focused on the use of neural networks and decisio§Pace modejsare discussed in detail and illustrated with
trees applied to classification taskesg., Dietterich[6]), but ~ examples.
ensemble methods are applicable to regression problems as
well (e.g., Perroneet al. [4]). Whereas in classification a
majority vote of single hypotheses/models is used, regression
ensembles come along with weighted averages of their The crucial first step is a proper choice of the param-
model outputs. For the choice of the participating models itetrized family on the basis of the given time series. The basis
is crucial that they are diverse to the extent that the errorfunctions ¢,(x)=®(X,c,,d,) have to be the same for all
they make are uncorrelated. (different) time series. Only the coefficientg, are assumed

For generating ensembles we have to introduce varianc® depend on the system parameters and a different set of
in the models involvedComputational variancés achieved them corresponds to each of thel,... L parameter set-
by randomizing the models. Prior to the creation of eachtingsp,
single model participating in the ensemble a basis function M
pool is made up from a number of randomly drawn recon- _
structed state space vectors defining the certgrsf the 9(xla(p)) 'zl (1) Prn(X) ©)
radial basis functiong8). Additionally the selected centers
may be shifted by random variatg5] to increase compu- In this way all dynamics are described in the same func-
tational variance of the resulting models. The widthsof  tion basis. The difficulty lies in the choice of a useful set
the Gaussian functions are chosen to be at maximum of thef basis functions that allows capturing different dynamics
order of the time series’ variance. From this pool the mos@ssociated with different time series. Here the construction
significant functions are chosen by the forward orthogonabf a model family from Gaussian radial basis functions is
regression algorithrfi24], which establishes the model in its done in the following steps. First a pool of centersis
first form. To improve it we apply a local search schemegenerated that are selected randomly from amoafste-
(Levenberg-Marquardt method, for a description see Refconstructed state space vectors and therefore follow their em-
[23)) to iteratively optimize those parameteimenters and pirical distribution(see also Ref[15]). The widthsd, are
widths) on which the model output of the series expansionchosen to be at maximum of the order of magnitude of the
(5) depends nonlinearly. The model coefficieqfs are up-  averagetime series variance. In accordance with the chosen
dated simultaneously in that process by linear methods. Arocedure terms are selected from the pool one after the
third learning step may consist of a multistep error reductiorother. Further details and considerations on this are given in
and adjustments to the coefficients. Since in the multiste\ppendix B.
case the output depends nonlinearly on the coefficigpts It is still possible then that not all modets(-)=g(-|q;)
the Levenberg-Marquardt method is used again to solve thachieve equally low error rates on their respective time series
minimization problem. The data presented to this learningr do not reproduce the original dynamics with the same
scheme for each model are randomly drawn from the originaficcuracy when run freely. This to a large extent depends on
data without checking for multiple occurrences. If the train-the spatial distribution of training examples given by the
ing data sets so generated had the same length as the origifferent time series. If the reconstructed attractors differ
nal, this would resemble the bootstrap method from statistickargely in shape, size, and position they fill different parts of
(for a thorough discussion see REf9]). Compared to a split state space. This may lead to the occurrence of basis func-
of the data leading to training and test data in the classicaions ¢; in the parametrized family that are not equally im-
fashion, the data used in each modeling run have a randoportant for the modeling of all of the participating time se-
distribution which enables th@instablg learning algorithm  ries. Like with the problem of a lack of transients, for some
to reach diverse solutions. In this way we introduealiza-  time series the corresponding coefficients may be difficult to
tional varianceinto our models. In such a way an ensembleestimate reliably. Generally, this method works well if tran-
represents an effective way of dealing with small amounts osients are included or if the attractors underlying the different
data. time series ar¢geometrically similar to some degree.

A reasonable number of models to be combined ranges Once the selection of basis functions is finished and the
from 3 to about 20. Investigations of the role of the ensemblaelevant model parameters are computed for the given time

A. Parametrized families
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series, the relation betwedphysica) system parametens

and model parametetghas to be modeled. In general, Bt ol : :
system parameters be mappedvtamodel parameters A !
QR — R, p—gy(p)m=1--M.  (10) 2 i
Describing this relation is again a matter of interpolation I |
or extrapolation. For example, a polynomial modmidern) -4
could be fitted to the samplegqy,,p;), whose (n &l ~
+B)!/n! B! coefficients are solution to a set of linear equa- & i L
tions ( L rows). For givenB the polynomial ordem and 03 0.3
numberL of models should be put into sensible proportions , .
to avoid overfitting. (b) ! !
Figure 4 shows bifurcation diagrams of the Rossler oscil- oo I
lator, -1r
. 2r I
X1 == Xo — X3, <& 1 |
I |
Xo = Xq + PXo, -4 ,,J:, - ,%\/
oo |
K= 2 +x3(x — 4, (11) Bs o

for p;=0.3--0.45. Figure 4a) shows a bifurcation diagram ;
computed with original model equatiorigl). The vertical (c)
dashed lines are plotted at those five parameter values
pe{0.31,0.34,0.37,0.4,0.4For which times series have -1r
been taken to construct a parametrized family of Gaussian -2
radial basis function networks with 15 terms. To obtain a *_|
continuous parameter dependence of the coefficients a thirc
order polynomial was fitted to the set of model parameters o
(gy,p),j=1---15,1=1---5. Afterwards the model can be 55
tuned to any value of the parametewithin a sensible range -85
to query the dynamics. This approach was used to compute

the reconstructed bifurcation diagram shown in Figh)4

where the model is used to generate time series in depen- FIG. 4. Bifurcation diagrams of the Réssler oscillat@y. Origi-
dence of the control parameterAs can be seen by compar- hal using Eq.(11), (b) reconstructed with parametrized family of
ing the results with Fig. @) many details of the bifurcation models(see Sec. Il A, and(c) reconstructed with extended state
structure are reproduced correctly. space modefsee Sec. Il B.

the extended state vectox;,p). By modeling we now seek

) ) , ) the hypersurface containing the array of curves;
One major shortcoming of the modeling ansatz discussed (x. ), instead of a model family based on single curves.

above is the need of transients or chaotic data to obtain gooﬁhe model comprises both dynamics and parameter depen-
estimations of the model parameters. However, measurefbnce As the parameter components are different from the

data often lack transient information and therefore are NObiher elements of the input vectors, dynamics takes place

well suited for that method. Another strategy of modeling theonly in x-component slices=RP) of the extended state

%fﬁace. This has to be taken into account, when the model is
used for the simulation of time series. For example, when
Emputing bifurcation diagrams those components of the in-
aﬁ t vector that correspond to parameters are kept fixed dur-
ing the free run of the model.
%= (XuP) = (SuSr+ -+ SD-1)roPLs - Pg). (12 One r.naj'or a}dvantage _of this methoq is, that the demands
on the distribution of training examples in reconstructed state
The input space of the model now has dimendibnB and  space are reduced compared to training on a single time se-
the model approximates a functid®? x RB— R. The recon- ries. The reason for that is, that by aggregating the training
structed time series along with their individual parameterexamples of many time series there is more information for
extensiongparameters are constant for a given time sgriesthe modeling process, especially when time series are treated
are merged together and form a single data set. This data Sgfat contain no transient information. Consider again Fig. 3
is used to train the model as if it was one time series onlyas an example: In the region of low periodic orhis< 2)
This approach is illustrated in Fig. 3. Thextg, is plotted vs  there is not enough information to even fit a second order

B. Extended state space models

goes back to Casdagdll4] in the late 1980s and was later
used by Judd and Me¢45]. The novelty of this ansatz was
the extension of the reconstructed state space to include
changing system parameters
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FIG. 5. Circuit diagram of the Colpitts oscillator.

polynomial. However, through the inclusion of data in a
neighborhoodwith respect to the paramejaghe amount of
training data now suffices for that purpose. This insight can

be applied to the modeling of data of higher dimensional (b)
(and continuoussystems as well. The generalization capa- or
bilities of the model at a particular parameter value profit -01r
from additional information contained in time series nearby. =02
The training procedure here is simpler than that of a pa- = -03
rametrized family because all time series are treated as a E” ~0.4

single data set. Centers for radial basis functions are again _05
chosen randomly from all reconstructed state vectors in the
extended state space. Term selection is performed as de-
scribed before including nonlinear optimization of center po-
sitions and widths. The influence of the terms on error reduc-
tion is shared among the individual time series segments of 08,
the data set. If one time series requitdsterms to yield a
good model, therlL time series modelled this way require
significantly less thah. X M terms. (c)
When using radial basis functions the range of all ele- L

ments of the input vectaix, X;_1, X2, - - - ,P1, P2, -..) Should o j e
be similar. This is guaranteed for the time series components =02y
Xi, X1, X2, - - -, DUt theparameter componengs, p,, ... may T 08
lie in a completely different range. In such cases (tpener- EN -04f 1 b
alization performance of the model may be improved by st
introducing additional scaling factors for the parameters. 06 | - k?/
With polynomial basis functions no such scaling factors are _0_7;«},{;
required. —osl | P

The above described modeling approach has been used to B ‘
obtain the result shown in Fig(®. There we used the same 0% 5 v§vol] 8

C

time series as in Fig.(8) (see Sec. Il A, but with no tran-
Slen.ts mdqded' The model consisted of 55 Gaussian radial FIG. 6. Bifurcation diagrams of the Colpitts oscillatéa) Ex-

basis functions and the parame_mlvas_scale_d upwards by a erimental result(b) single model, andc) ensemble consisting of
factor of 20.8. Note that the bifurcation diagram generatecfhree modelgsee text

with the extended state space meth@dg. 4(c)] matches

even better the original diagraffig. 4(a)] than the diagram small step size in the parameter dimension. There one coor-
computed with the parametrized families approdéfig.  dinate of a Poincaré section is plotted vs the voltsgeFor

4(b)]. Our experience with examples indicate that in generamodeling the dynamics and parameter dependence only ten
the extended state space method is superior to parametrizéthe series are used whose parameter values are given by the
families. vertical dashed lines.

Furthermore, the method is well suited for the application All models to participate in an ensemble were trained in-
of an ensemble strategy especially to improve the generaldividually on randomized subsets of the original data. A typi-
zation capabilities of models based on noisy real world timecal single model result is shown in Figlt§ and it should be
series. To demonstrate this we measured time series from aompared to the reference diagrdffig. 6@)]. Here 160
electronic Colpitts oscillato¢see circuit diagram in Fig.)5  Gaussian radial basis functions were used and a parameter
The measured signag| is the voltage over the capacit@,  scale factor of 2. As mentioned aboysee Sec. Il B the
and as the variable system parameter we chose the positigingle best model is hard to find and randomness in the
supply voltageVc. Figure §a) shows an experimental bifur- whole modeling procedure leads to a distribution of models,
cation diagram that has been recorded for reference usingwhich becomes obvious if one compares results from differ-
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ent modeling attempts that fail to reproduce each otherbetter than their members if the errors of the individual mod-
So we applied the ensemble stratefpee Fig. 6c)] and  els are small and not, or weakly, correlated. The key to en-
combined three models of comparable quality with equakemble learning methods are techniques to effectively pro-
weights. The individual models contained 155-160 termsluce diverse model populations. Such methods include the
and the same scale factor was used. The ensemble irse of variable model topologies and types as well as ran-
this case outperforms any single model. As the diagrandomizing initial parameters of training algorithrmputa-
shows, many detailed features of the origiffaly. 6@)] are  tional variancg or some sort of manipulations of the data
recovered. presented to these algorithniealizational variande The
(dis-)agreement of the different models constituting the en-
semble can be used to determine locationgrinde) param-
IV. CONCLUSION eter space where the desired description of the parameter

Two approaches for modeling parameter dependence éfependence is not yet reliable. In this way error bounds for
the dynamics of a giveriexperimental system have been Predicted bifurcations can be estimated. Furthermore, param-
presented. Both methods require as input a few time seried{€r values can be identified for which additional measure-
measured for different values of the physical control paramMents would be desirable resulting in aetive learning
eters. Usingparametrized familieshe problem of modeling Scheme for improving the model.
parameter dependence is separated from modeling the dy-
namics. This approach yields satisfying results but problems
may occur with simple attractors such as fixed points or pe- ACKNOWLEDGMENTS
riodic orbits filling a very small fraction of the input space,

girt]elzlts-rg(resl?siilm(;;Igitserfggdbgt;[\éofe: o rlcr)]g;uhdl\r/]v%;:zn'many interesting discussions. G.L. thanks G. Schewe and G.
9 pacanp Déetz at the Institute for AeroelasticifDLR Gottingen as

modeling dynamics and its parameter dependence are treated, as the Deutsche Forschungsgemeinsct@faduierten-

as a single task. In this framework fixed point solutions Orkolleg Strémungsinstabilititen und Turbulgnior continu-
periodic data are only a part of the whole modeling problem
. S .~ ous support.

and thus no ill-posed approximation tasks occur. The given
examples and experience with other data show thaethe
tended state spacmethod is in general superior to models
based on parametrized families.

In this paper we have assumed that the variable physical For regression problems the ensemble method may be de-
parameters are known and that their values can be directifned and described as follows. L&tRP— R be the true
incorporated in the modeling ansatz($bme of the chang-  regression to be modeled. Assume we have traigdedic-

ing physical parameters are not knowar cannot be mea- tor modelsf, to be combined in an ensemble. The ensemble
sured information about the parameter dependence is onlyytput is the convex sum

implicitly given in terms of the time series reflecting differ-

ent dynamics. This case has been investigated by Tokunaga — «

et al. [16], Tokudaet al. [17], and Bagarina@t al. [18—2Q F(x) = 2 wif(x), (A1)
using(different types of parametrized families. When fitting k=l

the parametrized familiy each time series provides a vectofhere the ensemble weightg have to obeys} w,=1 and

of model parameters defining a point in the corespondin@<w,<10k. The assessment of the generalization capa-
model parameter space. Then lingarinciple component bilities of the ensemble, i.e., the quadratic error of the en-
analysi$ [16,17,20,2] or nonlinear(principal curvey [18] semble e(x)=[y(x) _f_(X)]Z, involves the quadratic error

approximation methods are used to extract a compact repre- ., \ — —f 2 of modelf.. th drati
sentation of the distribution of model parameters. Bifurcatio pek%)—E[X(Xv)vkek:%)]ofothgOpaertick:,ipaini;verai%zgl:aarzg Ifh::m
=K ing

sets computed with the resulting models were compared wit | )
those obtained with the original model that was used to genscattering around the ensemble méagiven by the so-called
erate the time series. Another approach for treating the cag'semble ambiguityg,d],
of unknown parametergl9] is based on a superposition of K
the different models where the weights are used as bifurca- ax) = > Wl (F(x) - f(x)]2 (A2)
tion control parameters. k=1

If only a few time series for different parameter values are I .
available modeling methods are needed that are robust and°™ these definitions the relation
possess very good generalizat.ion abilities. The generated e(x) =ex) - alx) (A3)
models have to be able to describe correctly also the dynam-
ics and possible bifurcationgar) away from the parameter can be derived9].
values where time series have been measured. To achieve Under the assumption that the inputhiave been chosen
this goal we us@nsemble methodshere a superposition of randomly according to a probability distributi¢t{x) we can
the output of different individually trained models is consid- average(A3) over P(x) [i.e., e=fe(x)P(x)dx, etc] which
ered as result of théensemblg model. Ensembles perform yields themean ensemble generalization error

We thank our colleagues at the Third Physical Institute for

APPENDIX A: ENSEMBLE METHODS
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e=e-a. (A4) runs. A bootstrap replicate is obtained by random sampling
) ) ~ from the empirical distribution of the datae., for a data set
The message of EqA4) is the following: Make the indi-  of |engthN each sample is drawn with probabiliy2). The
vidual modelsf, good(low e) and make them differ in their N grawings can result in multiple appearance of some and
estimateglargea). These partly contradictory demands also gpsence of other examples in the training data set. Diversity
can be expresse_d in terms of the error correlatg®e Zhou s therefore provoked via randomizing the distribution of the
et al. [7]) of the individual models, data without any feedback. The latter, on the other hand,
comes into place in a boosting scheme, where examples that
Cj :j [y(x) = fi(x) JLy(x) - f;(x) ]P(x)dx, (A5)  turned out to be difficult to prediator classify by a prior
model receive a higher probability to be drawn as training
because examples for the next model.

APPENDIX B: GENERATING PARAMETRIZED FAMILIES

K K
ez; ZWiWJCiJ' (AB) Here we discuss in short what is necessary to consider,
== when selecting terms for a parametrized family. We consider
Therefore the ensemble generalization error is small whehere a general situation in the middle of the processZliet
individual errorse,=c,, are small and the errors of the par- be the set of indices corresponding to the pool of basis func-
ticipating models are uncorrelatésinallc; =c;;). This shows  tions available in theth step. Furthermore, by; we denote
immediately that nothing can be gained from totally corre-the vector of values} of time seried that its reconstructed
lated models where;;=€;, because the ensemble generaliza-state vec'[ors<'t are supposed to be mapped to by the model,
tion error in this case is given by the average quadratic erroxy—y. Let g,=(9,(xy)...9,(x), ... 0,(x})) be a vector
of the individual modelse==,wie=e. On the other hand, containing these mappings of state vectors of time séligs

for vanishing correlationgi.e., ¢;=0 for i#j) we have a  pasis functiorg,(-) and Iet@iﬁ being its orthogonalized ver-

theoretically minimal error of sion with respect to all corresponding vectors based on basis
K functions that have been chosen during previous steps 1
o= WﬁCkk- (A7) —-1. Then in step the ba_15|s func_tlorgﬂi(-) is inserted into the
k=1 model architecture which provides the largest total error re-

o ) o duction on allL time series, i.e., explains more of them than
For realistic scenarios the ensemble generalization errodny other term

settles somewhere in between these limiting cases.

In recent years many explanations have been given why —in2x(0)
ensembles work and why they are often superior to single Mi= argma%mE ViG99,
models(see, e.g., Refd5,8)). If, for instance, in classifica- =1
tion the error rate of a single classifier is lower than 0.5, thenand theith coefficient of the model of thkh time series is
if a majority rule is applied, the ensemble classifier has an _ i .
even lower error rat¢5]. In both cases, classification and il :<y||9§li)|>/”§£2|||- (B2)
regression, we encounter variances of different origin i
populations of single models. There is a so caltedhputa-
tional variancewhich has its origin in unstable optimization ; i
algorithms like most neural network training algorithms or functions belonging to the model are now relabeledniy
splitting rules of decision trees. These algorithms respond 1+ M (instéad ofu,, ... ,uy). This choice of a subset
sensitively to different initial conditions for the model pa- of terms constitutes the initial condition for a nonlinear op-

rameters such as random initial weights of a neural networkiimization of the model. The optimization aims at improving
They never produce the same model in different runs witfhe Gaussian basis functiorfs,(-) by moving their centers
different initializations, because they converge to differentm @nd changing their widthe, to more favorable values.
local minima of some complex error landscape. Another tprh'S is done iteratively, where in between consecutive itera-
of variance is introduced by the data sample itself, its limitedions thedm are updated via the orthogonal method of least
size and its noise content. This so-calledlizational vari- Sduares. For the ease of notation the parametgrand
anceis closely related to overfitting, but in contrast to a dm aré summarized in a vectd and by ag(}) we now
single model an ensemble of overfitted modetith its re- ~ denote the model with coefficientg, fitted to thelth time
sulting variety may provide a robust description of the data Series. Sd. of them additively contribute to the total mean
with good generalization features. Realizational variancéduare error and to its derivatives with respectithat are
may be generated or enhanced by various data manipulatidigcessary to define the gradient and the pseudo-HeBsian
and resampling techniques suchbagiging(bootstrap aggre- (needed for the Levenberg-Marquardt methadgeneral it-
gating, see Breimaf31] and Efron[29]) and boosting(see eration step of the minimization algorithm requires the fol-

L
2

: (B1)

nThe”q” have to be transformed to be coefficients of the non-
orthogonal basis functiong,,(-). For simplicity the basis

Freund and Shapirg32] or Avnimelech and Intratof33]).  lowing calculations:

Whereas in bagging the bootstrap replicates of the data set L LN

are independent in different runs, the data presented to the Emse(07) = = > [y — 91 (x| )12, (B3)
learning algorithm in a boosting scheme depend on prior LNj=1 =1
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9 Here we assume that all time series are of equal leNgth
—Eyse= E E —I[ye—a(x|6™)1?,  (B4) as the length ratio now acts like a weight when computing
J 6 LNi=1 =1 9 6 each newA@" (resulting in a tradeoff among all participat-

ing time seriel

) Afterwards the coefficients,, can be “polished” indi-
Dy = 2 > &g|(x,t|0< ) 9.910x/ 0 )_ (B5) vidually for all time series according to multistep error re-
LNiZitsr 96, 3 6; duction, as was explained above Fd).
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